Salt Effect on the Solubility of Copper and Beryllium Chelates of 4,4,4-Trifluoro-1-phenyl-1,3-butanedione

Yasuki Yoshimura,* Nobuyoshi Sato, and Makoto Кікисні Laboratory of Chemistry, College of Humanities and Social Sciences, Iwate University, Ueda, Morioka 020 (Received February 18, 1983)

In order to examine whether the substitution of a trifluoromethyl group for a methyl group in metal chelates of 1-phenyl-1,3-butanedione (BA) affects the salt effect on the solubility of these chelates, the solubility of copper and beryllium chelates of 4,4,4-trifluoro-1-phenyl-1,3-butanedione (BFA) in water and in some aqueous salt solutions was measured at 25 °C. The solubility in water (S_0) was $9.07 \pm 0.22 \times 10^{-7}$ mol dm⁻³ for the copper chelate and $4.85\pm0.08\times10^{-6}$ mol dm⁻³ for the beryllium chelate. These solubility values are compared with those of the corresponding BA chelates and an influence of fluorination on the solubility of these BA chelates is discussed. It was found that the solubility of the above BFA chelates in the aqueous salt solutions (S) could be expressed satisfactorily by the equation, $\log (S_0/S) = a\sqrt{C_s} + bC_s$, where C_s is the concentration of salt. This result suggests that introduction of CF3 group brings about a specific interaction between the fluorinated chelates and their surroundings.

In a series of our investigations, the salt effect on the solubility of bis(1-phenyl-1,3-butanedionato)copper-(II) (Cu(bzac)₂) and bis(1-phenyl-1,3-butanedionato)beryllium(II) (Be(bzac)₂) has been studied and a generalized interpretation for the salt effect in the solvent extraction of metal chelates was presented^{1,2)}. The substitution of a trifluoromethyl group for a methyl group in the metal chelates of β -diketones affects their properties such as volatility.3) The polarity of the metal chelates of the above fluorinated β -diketones is expected to be higher than that of parent chelates because of the high electronegativity of fluorine atoms.

On the other hand, in our studies on the salt effect on the solubility of BA and BFA, it was suggested that species of the latter was less polar than that of the former in aqueous solutions.^{4,5)} It is very interesting to see whether fluorination of β -diketone chelates affects the salt effect or not. Thus, in the present study, the solubility of bis(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)copper(II) (Cu(bfac)₂) and bis(4,4,4-trifluoro-1phenyl-1,3-butanedionato)beryllium(II) (Be(bfac)₂) in water and in aqueous salt solutions is measured and the salt effect on the solubility of these chelates is compared with that for Cu(bzac)₂ and Be(bzac)₂.

Experimental

The copper and beryllium chelates of BFA were prepared and purified by the same procedures as used for Cu(bzac)2 and Be(bzac)2.1,2) The melting points of these chelates were 239 °C (Ref. 6, 241 °C) and 143 °C (Ref. 6, 143 °C), respectively. Aqueous solutions of LiCl, NaClO₄, NaCl, NaNO₃, and Na₂SO₄ were also prepared as previously reported.^{1,2)} Redistilled water was used and heptane was purified by an ordinary method.

Solubility Measurement. The apparatus and procedure used for the solubility measurement were similar to those previously reported,1) except for the procedure modified to extract completely BFA into heptane. Filtered aliquots of the solution saturated with Cu(bfac), or Be(bfac), were acidified with one drop of 5 M (1 M=1 mol dm⁻³) HCl solution and then exact volume of these acidified solutions (30 cm³ for Cu(bfac)₂ and 10—20 cm³ for Be(bfac)₂) was transferred to 50 cm3 centrifuge tubes in which Na₂SO₄ was previously placed. As the partition coefficient of BFA between water and heptane is lower than that of BA,7) Na₂SO₄

was added to the above acidified solutions as a salting-out reagent to extract completely BFA. BFA was completely extracted at the concentrations of Na₂SO₄ over 1.5 M, and so in most cases Na2SO4 was added to give the concentration of 2 M. In the cases in which the addition of 2 M Na₂SO₄ results in the precipitation of salts while being extracted, for example, in the solubility measurement for Be(bfac)₂ in 3 M salt solutions, Na₂SO₄ concentration was reduced to 1 M. Even in these cases, the complete extraction of BFA was confirmed by stirring again aliquots of the aqueous phases, from which BFA was once extracted, with freshly added heptane. The mixtures of the aqueous solutions prepared as described above and 5 cm3 of heptane were warmed at 30 °C to dissolve completely added Na₂SO₄ and stirred for 2 h with a magnetic stirrer.

The calibration curve to determine the concentration of BFA extracted into heptane phase was obtained as follows. Three independent series of standard solutions of BFA in heptane were prepared over the concentration range of $6.47 \times 10^{-6} - 3.24 \times 10^{-5} M$, and 5 cm³ portions of these standard solutions were stirred for 2 h with 10-30 cm³ of 2 M Na₂SO₄ acidified with one drop of 5 M HCl. After the heptane phases were separated by centrifugation, the absorbance at 323 nm in the heptane phases was measured, and the least-squares method was applied to these data. The calibration curve is expressed as

$$C = (A + 0.0077)/(1.48 \times 10^4),$$
 (1)

where C and A are the concentration (M) of BFA, and the absorbance at 323 nm in heptane phases, respectively.

The pH of sample solutions (250 cm³) to be saturated with Cu(bfac)2 or Be(bfac)2 was adjusted within the ranges described in the following section by adding 0.1-0.4 cm³ of 0.08 M sodium tetraborate-5 M HCl mixed solution of pH 7.4.

Results and Discussion

Solubility of $Cu(bfac)_2$ and $Be(bfac)_2$ in Water. The results of solubility measurement of Cu(bfac), and Be(bfac)₂ in water are presented in Tables 1 and 2, respectively, in order to demonstrate influences of pH and equilibration time. The solubility values calculated from the concentration of BFA in heptane phases were practically constant over the pH ranges of 6.9 -7.2 for $Cu(bfac)_2$ and 6.2-6.5 for $Be(bfac)_2$. For Be(bfac)₂, fairly long equilibration time was required to attain complete saturation.

Table 1. Solubility measurement for Cu(bfac)2 in water at 25 °C

Equilibration time/h	pH ^{a)}	pH ^{b)}	Solubility 10 ⁻⁷ mol dm ⁻³	Equilibration time/h	$\mathrm{pH}^{\mathrm{a}\mathrm{)}}$	$pH^{b)}$	$\frac{\text{Solubility}}{10^{-7} \text{ mol dm}^{-3}}$
Run 1				Run 3			
32	7.21	6.99	9.27	42	7.20	7.16	9.59
48	7.01	6.99	9.15	66	7.09	7.01	9.18
54	6.99	7.01	8.93	90	7.06	7.11	9.03
72	7.16	7.09	8.82	114	7.02	6.99	9.01
Run 2							
72	7.19	7.10	9.20	N	Aean of all o	data 9.07:	£0.22
95	7.01	7.03	8.85				
115	7.02	6.93	8.99				
142	7.00	7.01	8.85				

a,b) The pH of saturated solutions measured before and after being filtered to be equilibrated with heptane, respectively.

Table 2. Solubility measurement for Be(bfac)₂ in water at 25 °C

Equilibration time/h	$pH^{a)}$	$\mathrm{pH}^{\mathrm{b})}$	$\frac{\text{Solubility}}{10^{-6} \text{ mol dm}^{-3}}$	Equilibration time/h	$\mathrm{pH}^{\mathrm{a}\mathrm{)}}$	$\mathrm{pH}^{\mathrm{b})}$	Solubility 10 ⁻⁶ mol dm ⁻³
Run 1				Run 2			
90	6.40	6.40	4.70	235	6.26	6.24	4.86
114	6.49	6.44	4:89	264	6.29	6.23	4.88
138	6.42	6.42	4.84	283	6.24	6.24	4.78
168	6.40	6.38	4.96	314	6.21	6.17	4.81
186	6.48	6.41	4.90	332	6.24	6.22	4.85
210	6.39	6.43	4.84	356	6.30	6.24	4.73
234	6.39	6.43	4.96	380	6.49	6.48	4.96

a,b) The pH of saturated solutions measured before and after being filtered to be equilibrated with heptane, respectively.

Table 3. Melting points and solubilities in water (S₀) at 25 °C for Cu and Be chelates with BA and BFA

Chelate	Mp $\theta_{\rm m}/^{\circ}$ C	S ₀ /mol dm ⁻³	
Cu(bzac)2 ^{a)}	195	1.38×10 ⁻⁶	
Cu(bfac)2	239	9.07×10^{-7}	
Be(bzac)2b)	211	9.98×10^{-7}	
Be(bfac)2	143	4.85×10^{-6}	

a) Ref. 1. b) Ref. 2.

A comparison of the solubility of Cu(bfac)₂ and Be(bfac)₂ in water with that of Cu(bzac)₂ and Be(bzac)₂ is very interesting. As shown in Table 3, the higher the melting points of these chelates are, the smaller their solubilities are. This is a general phenomenon for the solubility of similar solids in their natures.⁸⁾ The extremely low melting point of Be(bfac)₂ may be ascribed to a mutual repulsion between molecules in its solid state caused by the introduction of CF₃ group.⁶⁾

Salt Effect on the Solubility of Cu(bfac)₂ and Be(bfac)₂. For the solubility measurement in aqueous LiCl, NaNO₃, NaClO₄, NaCl, and Na₂SO₄ solutions, the pH ranges which gave constant values for BFA concentration in heptane phases were 6.4—6.9 for Cu(bfac)₂ and 6.0—6.5 for Be(bfac)₂. For each sample solution,

the solubility measurement was made independently 4 times for $\operatorname{Cu}(\operatorname{bfac})_2$ and 4—7 times for $\operatorname{Be}(\operatorname{bfac})_2$ at adequate time intervals (cf. Tables 1 and 2). The number of solubility measurement for $\operatorname{Be}(\operatorname{bfac})_2$ depends on the volume taken out of the saturated solutions. The standard deviations of these measurements were within 3% in all cases.

In the previous studies, it was confirmed that the solubility of $Cu(bzac)_2$ and $Be(bzac)_2$ in aqueous salt solutions (S) could be expressed by

$$\log S = \log S_0 - k_{\rm s} C_{\rm s}, \tag{2}$$

where S_0 , k_s , and C_s were the solubility of these chelates in water, salting coefficient, and the concentration of salts, respectively.^{1,2)} For $Cu(bfac)_2$ and $Be(bfac)_2$, as the plot of log(S) vs. C_s did not give straight lines, Eq. 2 was not valid.

As shown in Figs. 1 and 2, where $\log (S_0/S)$ is plotted against $\sqrt{C_s}$ for $\operatorname{Cu}(\operatorname{bfac})_2$ and $\operatorname{Be}(\operatorname{bfac})_2$, it was found that the solubility data for these chelates might be expressed by

$$\log (S_0/S) = a\sqrt{C_s} + bC_s \tag{3}$$

The values for a and b in Eq. 3 obtained by applying the least-squares method to the solubility data are listed in Table 4, where the square root of the dispersions of residues of $\log (S_0/S)$, *i.e.*,

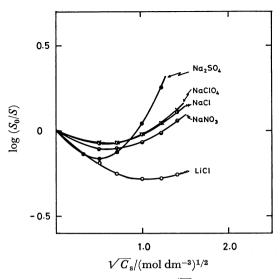


Fig. Plot of $\log (S_0/S)$ vs. $\sqrt[4]{C_s}$ for $\operatorname{Cu}(\operatorname{bfac})_2$. Solid lines are values calculated from $\log (S_0/S) = a\sqrt[4]{C_s} + bC_s$ by using the least-squares method.

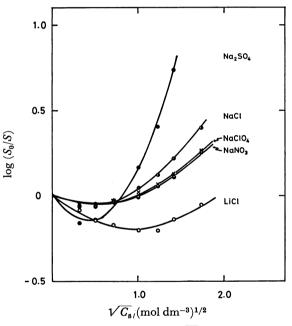


Fig. 2. Plot of $\log (S_0/S)$ vs. $\sqrt{C_s}$ for $\operatorname{Be}(\operatorname{bfac})_2$. Solid lines are values calculated from $\log (S_0/S) = a\sqrt{C_s} + bC_s$ by using the least-squares method.

$$\sigma = [\sum_{i=1}^{n} \{\log (S_0/S_i) - (a\sqrt{C_{si}} + bC_{si})\}^2/(n-1)]^{1/2}$$

is also tabulated. The S_0/S term in Eq. 3 represents the ratio of the activity coefficient of chelates in aqueous salt solutions to that of chelates in water.⁹⁾

For all the salts studied in this work, the values for a-coefficient were negative and those for b-coefficient were positive (see Table 4). In a low region of C_s , the $a\sqrt{C_s}$ term is larger than the bC_s term and the

Table 4. a- and b-coefficients in $\log(S_0/S) = a\sqrt{C_s} + bC_s$ for $Cu(bfac)_2$ and $Be(bfac)_2$

Salt	$a/(\text{mol dm}^{-3})^{1/2}$	b/mol dm ⁻³	$\sigma^{a)}$				
Cu(bfac) ₂							
LiCl	-0.512	0.232	0.0060				
NaNO ₃	-0.336	0.267	0.0038				
NaClO ₄	-0.259	0.245	0.0040				
NaCl	-0.270	0.247	0.0040				
Na ₂ SO ₄	-0.685	0.729	0.0046				
	Be(bi	fac) ₂					
LiCl	-0.411	0.216	0.0177				
NaNO ₃	-0.206	0.201	0.0097				
NaClO ₄	-0.204	0.206	0.0114				
NaCl	-0.236	0.272	0.0099				
Na_2SO_4	-0.707	0.868	0.0262				

a)
$$\sigma^2 = \sum_{i=1}^n \{ \log (S_0/S_i) - (a\sqrt{C_{si}} + bC_{si}) \}^2 / (n-1).$$

solubility of $\operatorname{Cu}(\operatorname{bfac})_2$ and $\operatorname{Be}(\operatorname{bfac})_2$ in aqueous salt solutions is higher than the solubility in water. On the other hand, in a high region of C_s , the bC_s term is predominant and the solubility of these chelates decreases with increasing C_s . From a comparison of the salt effect on the solubility of $\operatorname{Cu}(\operatorname{bfac})_2$ with that for $\operatorname{Be}(\operatorname{bfac})_2$, it seems that the influence of the introduction of CF_3 group on the salt effect scarcely varies with the configuration of the chelates.

When the value for a-coefficient in Eq. 3 is negligible, Eq. 3 agrees with Eq. 2. Thus, a difference between the salt effect on the solubility of $Cu(bfac)_2$ or $Be(bfac)_2$ and that for $Cu(bzac)_2$ or $Be(bzac)_2$ is attributed to the $a\sqrt{C_s}$ term. Although the $a\sqrt{C_s}$ term must reflect a specific interaction between fluorinated chelates and water molecules or ions, more detailed study is required for clarifying the interaction.

References

- 1) Y. Yoshimura, J. Inorg. Nucl. Chem., 42, 1749 (1980).
- 2) Y. Yoshimura, J. Inorg. Nucl. Chem., 43, 1615 (1981).
- 3) For example, a) W. D. Ross, Anal. Chem., 35, 1596 (1963); b) R. E. Sievers, B. W. Ponder, M. L. Morris, and R. W. Moshier, Inorg. Chem., 2, 693 (1963); c) W. D. Ross and G. Wheeler, Jr., Anal. Chem., 36, 266 (1964); d) W. R. Wolf, R. E. Sievers, and G. H. Brown, Inorg. Chem., 11, 1995 (1972).
- 4) Y. Yoshimura and N. Suzuki, Anal. Chim. Acta, 91, 315 (1977).
 - 5) Y. Yoshimura and N. Suzuki, Talanta, 25, 489 (1978).
- 6) E. W. Berg and J. T. Truemper, J. Phys. Chem., **64**, 487 (1960).
- 7) T. Sekine, Y. Hasegawa, and N. Ihara, *J. Inorg. Nucl. Chem.*, **35**, 3968 (1973).
- 8) K. Shinoda, "Yôeki To Yôkaido," Maruzen, Tokyo (1974), p. 247.
- 9) F. A. Long and W. F. McDevit, *Chem. Rev.*, **51**, 119 (1952).